
General purpose experimental pcbs

Here are a few pcbs that provide simple experimental abilities for several AVR
microcontrollers. Those shown can work with ATmega8515, ATtiny2313 and ATtiny26.
If we need other mpus we have to build the corresponding pcb. So for now, we have three
pcbs, one for each of the above mpus. This way we don’t need expensive development
systems.

The name of the mpu is printed on the solder side, so now it reads opposite. When printed
it should read normally.

We can divide those pcbs in two categories: (a) mpu pcbs, (b) peripheral pcbs. Cat-a pcbs
are those that have a specific mpu, while cat-b pcbs are those that can be plugged to one
of the cat-a pcbs. Cat-b pcbs contain LEDs (buffered or not) or switches. Of course we
can construct more cat-b pcbs that will be more project oriented, like eeprom, other ICs,
push buttons, etc.

Cat-a pcbs.
Mpus have ports, through which they communicate to the surrounding “world”. We can
see on cat-a pcbs, that each port has a separate connector / extension slot, where cat-b
pcbs can be plugged. Each port has two paralleled extension slots, so that we can connect
two cat-b pcbs at each port. Cat-a pcbs also have an ISP connection port. Normally it
should be 2x3 pins arrangement, but I have modified it in 1x6 in order for the pcbs to be
designed easily. You can modify the cable that comes with the AVRISP or other ISP
programmer, so that it fits my arrangement. It is worth it. Or you can use a simple
converter that you can easily build.
We see the three cat-a pcbs below:

When we want to experiment, we choose the appropriate mpu and corresponding pcb,
then we choose one or more extension pcbs, we connect the ISP, we apply 5volts
stabilized power and we start experimenting.

 1

B. cat-b pcbs:
As we said cat-pcbs can have LEDs, switches, push buttons, eeproms, or any other IC
that is required for our project. So we need to construct additional pcbs, if we need more
“peripherals”.

We can see below several cat-b pcbs.

We also see that if a pcb needs power supply, it has a protection diode of the type
1N4001, against reverse power connection. This also protects the ISP programmer which
is very sensitive to supply-voltage variations. Do not plug or unplug anything when the
ISP programmer is connected and power is on. First switch the power source off.

As we can see each pcb has a name.
L4 pcb has four common-cathode LEDs with a series resistor each. We can plug this
where no more than 4 LEDs are needed and no other component is to be connected to the
same points in parallel. If this is not the case, we have to use a buffered pcb like B4,
which provides 4 buffered LEDs. I have preferred to use the 4093 Schmidt-trigger
NAND gates for buffering, that will work for sure, instead of a normal buffer, like 4001.

If we want to connect 5 to 8 LEDs then we must use the pcbs L8 or B8 depending if we
want buffering or not.

The pcb named S4 it has just a 4-bank dip switch with common point.
The S8 has an 8-bank dip switch bank.
The pcb EE1 can accept a series EEPROM like 24CXX, where XX=01, 02, 04, 08. There
is an optional jumper that you can insert, in case you want to try other programming
modes of the chip. Then you must cut the shorting of the jumper.

 2

Costruction

We notice that these
cat-b pcbs, have
edges without holes,
since female pins are
supposed to be
soldered there.

See in the pictures.
The female pins on
cat-b pcbs have to be
soldered vertically.
These correspond to
the male pins on the
cat-a pcbs. The
polarity of connection
power is pointed on

the pcbs.

Also a file with the
above pcbs is
included, in the
‘sprint” software pcb-
design format. It is
called general.lay

Attention! Do not use
direct switches to
ports that have the
ISP signals (MOSI,
MISO and CLCK). If
the switch is closed
during ISP, the
programmer may be
damaged.

I have also included
the file general.lay
where the pcbs are
drawn for the pcb
“sprint” software.

 3

AVR-assembly code examples.
In order to have something to experiment, here are a few code examples, so that you can
copy-paste and run. They are tested. I use AVR studio for generating all my projects.

The first example is very simple, and I use it whenever I want to check that the pcb is
assembled correctly, and everything is ok. I watch the connected LEDs to count in binary
for ever. See file: test8515.asm. The same routine for the ATtiny2313 is in file
test2313.asm.

The second example demonstrates the Pulse Width Modulation ability of all (I guess)
AVR mpus. I use a routine to periodically vary the duty cycle of the PWM outputs, to
drive a LED. ATmega can produce 3 independent PWM outputs. Notice that the intensity
of light is oscillating. If you reduce the delay then a ramp (saw-tooth) wave can be
generated. If you low-pass filter the outputs, then you have a satisfactory Digital to
Analog converter. The code is in file test-timers-pwm.asm

Vasilios Stergiopoulos
Stergio33@yahoo.co.uk

 4

mailto:Stergio33@yahoo.co.uk

